

Alpha Zero Application for Popular Chess Games

ELENE6885.2018Fall
Fan Yang fy2232, Ming Li ml4076, Wenyi Tao wt2271, Xinlei Cao xc2420, Ziyi Ye zy2302

Columbia University

Abstract

Recently, the Alpha Zero program, which starts from
random play and given no domain knowledge except the
game rules, achieved superhuman performance in the
game of Go. In this project, we generalize this approach
and implement the Alpha Zero algorithm to solve two
popular game problems, Gomoku and Connect Four and
we also explore how to define and solve the game
Checker using AlphaZero algorithm. For Gomoku and
Connect Four, we solved the problems using several
different methods and got good solutions. And we also
showed ​appropriately defining a problem is very
important before implement an algorithm in the
experiment of checker.

1. Introduction
1.1 Background

Games are an interesting domain for artificial
intelligence research. They provide a controlled and
well-defined environment, generally straightforward
rules, and clear-cut results. However, game-winning
formulas are often complicated and nonsingular. These
characteristics make games suitable to test out different
artificial intelligence approaches.

Traditionally, artificial intelligence program leverage
enormous amounts of human expertise and data to learn
how to play games. Along with the development of
different algorithms such as alpha-beta search, deep
neural networks, MCTS, and some new reinforcement
learning method, the solution becomes better and better.

AlphaGo Zero [2] is one of the most latest algorithms
for the problems in this domain. Based solely on
reinforcement learning to learn from scratch, without
human data, guidance or domain knowledge beyond game
rules, AlphaGo Zero has demonstrated its strong ability in
Go game and can be much more easily generalized to
other problems without significant human effort.

1.2 Related Work and Literature Review

In the history of artificial intelligence research in the
game domain, a large number of approaches have been
proposed for board games.

The basic program aims to perform a complete search
of all the possible moves in the future using game-tree
searching and learn how to play using alpha-beta pruning
along with a board evaluation function. In 1997, Deep
Blue defeated the human world champion, which is a

landmark in the application of artificial intelligence in
board game domain. The programs Deep Blue [3] took is
to evaluate positions using features handcrafted by human
grandmasters and carefully tuned weights, combined with
a high-performance alpha-beta search. However, to search
to a depth of n moves with N possible movements,
p!/(p-n)! board situations have to be evaluated [4], which
requires massive computational power.

With the development of reinforcement learning, a
new method showed up. Freisleben [5] designed an
appropriately designed network to play a series of games
against an opponent and trained the network using a
reinforcement learning algorithm to evaluate the
non-occupied board positions by rewarding good moves
and penalizing bad moves. However, this method is also
limited to the small board game.

To improve the performance and efficiency of basic
reinforcement learning, a common approach is to
introduce pre-determined patterns based on human
experimentation. But in the meantime, it also limits the
method to the area where human expertise is lacking.

It was until 2015 that AlphaGo, which was the first
program to achieve superhuman performance in Go,
appeared. Instead of using supervised learning systems
that are trained to replicate the decisions of human
experts, it trains reinforcement learning systems from
their own experience, which allows them to exceed
human capabilities, and also to be generalized without
expert knowledge.

The previous version of AlphaGo combined
supervised learning and reinforcement learning.

AlphaGo Fan introduced Monte Carlo tree search
(MCTS). It combined two deep neural networks: a policy
network helping to have a greater chance to choose the
good moves while a value network to evaluated positions.
The training process can be divided into two part. In the
first part, the author trained policy network by supervised
learning to accurately predict human expert moves. In the
second part, the author utilizes self-play strategies to train
the value network to evaluate positions in the tree and
refine the policy network by policy-gradient in the
meantime.

AlphaGo Lee is similar to AlphaGo Fan. The key
differences are: 1) In AlphaGo Lee the value network was
trained from the outcomes of fast games of self-play by
AlphaGo, rather than games of self-play by the policy
network; 2) It trained larger network using more
iterations.

 2

AlphaGo Zero, which is the latest evolution of
AlphaGo, started from completely random play. Another
two significant differences from the previous version are
that AlphaGo Zero uses a single neural network rather
than separate policy and value networks, and also a
simpler tree search that relies upon the single neural
network to evaluate positions and sample moves, without
performing any Monte Carlo rollouts.

2. Methodology

In this part, we introduce the architecture of
AlphaZero and the technical details how AlphaGo Zero is
trained from games of self-play by a novel reinforcement
learning algorithm.
2.1 Deep Neural Network

AlphaGo Zero uses a new deep neural network which
combines the roles of both policy network and value
network into a single architecture. The input of his neural
network is the current position and its history, and the
outputs are the move probabilities of each action and the
estimated probability of winning (i.e. value) at this state.

The neural network parameters are updated to
maximize the similarity of the policy vector to the pt
search probabilities , and to minimize the error πt
between the predicted winner and the game winner.vt

Figure 2-1: Architecture & Training of DNN in AlphaGo Zero.

2.2 Self-play Training
The AlphaGo Zero self-play algorithm can be

understood as an approximate policy iteration scheme in
which MCTS is used for both policy improvement and
policy evaluation.

Policy improvement starts with a neural network
policy, executes an MCTS based on the policy’s
recommendations, and then projects the search policy
back into the function space of the neural network.

Policy evaluation is applied to the search policy: the
outcomes of self-play games are also projected back into
the function space of the neural network.

These projection steps are achieved by training the
neural network parameters to match the search
probabilities and self-play game outcome respectively.

Figure 2-2: Process of Self-play Training

2.3 Search Algorithm

AlphaGo Zero uses a simpler variant of the
asynchronous policy and value MCTS algorithm
(APV-MCTS).

In the search tree, each node s contains edges (s, a) for
all legal actions. Each edge stores a set of statistics: the
visit count N(s, a), the total action value W(s, a), the mean
action value Q(s, a) and the prior probability of being
selected P(s, a).

During each simulation, moves are selected starting
from the root state to maximize an upper confidence
bound Q(s, a) + U(s, a), where U(s, a) ∝ P(s,
a) / (1 + N(s, a)) and the iterations stop if encountering
a leaf node.

Multiple simulations are executed in parallel on
separate search threads. The algorithm proceeds by
iterating over three phases and then selects a move to
play.

Figure 2-3: Architecture & Training of MCTS in AlphaGo Zero.

3. Implementation

Our project contains two applications of Alpha Zero:
Gomoku, Checker and Connect Four.
3.1 Gomoku
3.1.1 Environment
Game Rule

Gomoku, also known as ‘five-in-a-row’, is played on a
square board. In the game, two players place stones
alternatively on the intersections of the board and the one
who first gets 5 of his stones in a straight line, no matter
vertical, horizontal or diagonal, wins the game.

Programming Implement

 3

State s: We used a 3-dimensional matrix to represent
our state space. The 3 dimensions are ​channels by ​board
width by ​board height​.[7] We consider the first two
channels of the problem to be the raw board
representation. The matrix in the first channel is the
representation of white pieces and the matrix in the
second channel is for black pieces. The value of the
element is 1 if occupied or 0 if empty. The other channels
will be well-defined in the following sections.

Action a: ​Since the state is the raw board

representation, we can use all the next possible moves for
our action space.

3.1.2 Policy-Value-Network

The Policy-Value-Network is a convolution neural
network based model, whose input is the state. The
model’s output is the probabilities of each action and the
estimated value of this state. In our experiment, we built
three weight-sharing convolution layers. On the top of
these layers, we added one convolution layer and one
dense layer separately for both the policy net and value
net.

3.1.3 Improvement of Input of Network

For the basic policy-value-network, the input state was
defined by three channels, whose shapes were all two
dimensions like a chess board (length by width). The first
channel was the location of the current player’s stones (if
there was a stone, the value of its corresponding location
was set as 1 otherwise as 0). The second channel was the
location of the opponent’s pieces. Because we know
offense played an important role in the chess situation in
Gomoku, we added the third channel into the network to
represent the offense information (if the current player
was the offense, all the value of this layer was set as 1,
otherwise as 0).

In order to make the model converge more quickly and
improve the performance, we added one more channel as
the input of the network to tell the model the last move
location (only the value of the location of the last move
was set as 1, others as 0). Because it was more likely to
place a stone near the last piece placed by the opponent.
This was achieved in our second version algorithm.

In our third version algorithm, we added one more
channel based on the version two model to represent the
stone move before the last one, i.e. the last move of the
current player, cause we thought the last move of the
current player is highly related with the intention of the
player and the current move.

By comparing the three different versions, we want to
show finding a better input of network helps with

accelerating the speed of converging and finding a better
solution within the same epochs.

3.1.4 Data Augmentation

It is the data simulation part takes the most of the
computation cost, in order to save the computation cost
and help our model converge, we flipped and rotated the
board to generate more data for the network training,
because the result remains the same after these
transformations.

3.2 Connect Four
3.2.1 Environment
Game Rule

This game is played on a vertical board with seven
hollow columns and six rows. Each column has a hole in
the upper part of the board, where pieces are introduced.
There is a window for every square, so that pieces can be
seen from both sides. The aim for both players is to make
a straight line of four own pieces; the line can be vertical,
horizontal or diagonal.

Programming Implement

State s: ​Like the architect we used in Gomoku
implementation, we also use a 3-dim matrix to represent
the state space. The main difference is lied in the channels
design in the first channel. The other two channels are the
board width and board height, which is the same as the
Gomoku game.

Action a: As for each round of Connect 4 game, the

player can only place one piece from one of the seven
holes on the top, so here in order to accelerate the
computeration, I only use a length 7 binary valued vector
to represent the action space. And for each move, I use a
help function to get the move is valid or not and return the
updated board.

3.2.2 Policy-Value-Network

In addition to the Convolutional NN used in Gomoku
modelling, in the Connect4 policy value network, we also
leverages the Residual Network technology to optimize
its network model. The Residual Network is introduced
here to overcome the degradation problem of the deep
neural network. As the network depth increasing,
accuracy gets saturated and then degrades rapidly.[12]

Given a neural network and denote its input is and x
its expected output is , if there is an extra edge in the (x)H
graph which pass the input directly to the output as one x
additive value, then the network is supposed to learn will
change from to . As depicted by (x)H (x) H(x) xF = −

 4

the diagram below, it is a typical Residual Unit of
Residual Network.

Figure 3-1:typical Residual Unit of Residual Network

Due to the “shortcutting” of the input information to

the output, the new model protects the integrity of the
information and it also simplifies the learning objective
and learning complexity as the entire network just needs
to learn the difference between input and output.[12]

4. Results

We compare the model we trained to others’ models to
see how well AlphaZero performs in the two chess games.
4.1. Gomoku

From the three different versions’ result, we can
conclude that by adding one more layer to tell the model
the last move location and the move before the last one,
we can improve the speed of convergence and the
capability of the model within the same limited training
epochs.

Figure 4-1:The Change of Loss in Training Process for 3 Models.

Figure 4-2:The Change of entropy in Training Process for 3 Models.

From the above two figures, we can see the change of

loss, entropy for the three different models. When we
update the policy network, we set the early stopping
criteria to be related to KL divergence of probability over
the actions of the same batch prediction. It measures how
aggressive we update the model. For each step, we update
our model and record the corresponding loss and entropy
of our policy network.

5- layer contain more information will work better in
the long run but each network are initialized with random
weights therefore intuitively contains more garbage
compared to 3 and 4 channels. We do find combining one
last move from the opponent will help converge faster at
first.

Offensive Model Defensive Model Winner Model

3-Channel Model 4-Channel Model 4-Channel Model

3-Channel Model 5-Channel Model DRAW

4-Channel Model 3-Channel Model 4-Channel Model

4-Channel Model 5-Channel Model 4-Channel Model

5-Channel Model 3-Channel Model 5-Channel Model

5-Channel Model 4-Channel Model 5-Channel Model

Table 4-1: Winning Rates between Three Models Against Each Other

From the above table, we can see the result of
competition between every two teams from the three
different models that the 4-Channel Model and 5-Channel
Model have better performance than 3-Channel Model.

4.2 Connect Four

 5

As Connect Four is a really old game and there have
already been perfect mathematical solver for this game
using optimization method [13, 14, 15], so I try to use my
own solver to compete with the classic solver [13] and the
really strong optimization solver using Alpha-beta
pruning algorithm [14]. By define the player API in the
game module, it’s easy to achieve the competition
between different models even if the model is not
developed by us.[10]

The following is the result of 100 rounds of play
between the three selected models: Classical Solver,
Alpha-beta Solver and our version of Alphago Zero
model.

Offensive
Model

Defensive
Model

Winner
Model

Winner
 Rate

Zero Classic Zero 81%

Classic Zero Zero 78%

Zero Alpha-beta
Pruning

Zero 63%

Alpha-beta
Pruning

Zero Alpha-beta
Pruning

89%

Table 4-2: Winning Rates of Three Models Against Each Other

5. More Games
Apart from the experiment on Gomoku and Connect

Four, we further explore a more complicated game
Checker.

Checkers is played on a standard 64 square board.
Only the 32 dark colored squares are used in play, as
shown in Figure 3-1 . The object of the game is to capture
all of your opponent’s checkers or position your pieces so
that your opponent has no available moves. Basic
movement is to move a checker one space diagonally
forward. You can not move a checker backwards until it
becomes a King. If a jump is available, you must take the
jump. If one of your opponent’s checkers is on a forward
diagonal next to one of your checkers, and the next space
beyond the opponent’s checker is empty, then your
checker must jump the opponent’s checker and land in the
space beyond. Your opponent’s checker is captured and
removed from the board.

Figure 3-1: Checker Game Board

This game has been solved using TD learning and

Monte-Carlo Method [5], in this project we are going to
use AlphaZero algorithm to better define and solve this
problem.

TD Learning method

Under TD Learning method, the author considered the
states to be the raw board representation which is an array
signifies the dark tiles of the checker board. Each element
represents a tile and the value is determined by whether a
tile is occupied. If the tile is empty then the element in the
array is 0, if it is occupied by a piece then it is set to -1.0
or 1.0; if it’s a king then it is sent to -0.5 or 0.5.

The reward is +1 for a winning move, -1 for a losing
move and 0 for a draw. All actions that do not come to a
final board position gets a reward of 0.

The first method attempted is temporal difference
algorithms involve bootstrapping. Experiments run using
replacing eligibility traces and λ=0 , λ=0.9 didn't show
any improvement over the Monte-Carlo Method.

Monte-Carlo Method

In Monte-Carlo method the state value is estimated as
the average of the rewards following a visit to this state in
an episode. To generate an episode, simply having the
agent play against a random player. This method proved
to be just as good as any other.

AlphaZero method

Besides the two reinforcement learning algorithms,
we implemented AlphaZero method for checker game.

State s: Similar to the application in Gomoku, we
used a 3-dimensional matrix to represent our state space.
Since there are 32 valid dark squares are used in play, we
used a 5 by 8 by 4 matrix to define a particular state. The
two matrices in the first two channels represents the raw
board representation of white piece and king piece
locations. The two matrices in the third and forth channels
represents the raw board representation of black piece and

 6

king piece locations. And the last channel stores the last
movement.

Action a: We used integer pairs of length two to
define an action. The first integer to determine the piece at
which location to move; and the second integer can be
one of the following four: [1, 2, 3, 4], which represents
left forward, right forward, left backward and right
backward, respectively.

​MCTS: ​One of our most important improvement is
flipping the board. When growing Monte Carlo tree, after
set the node state, we intensively flip the board in order to
change to the opposite player. Then we grow the action
space in the next layer and update the Q + U for all states
along Monte Carlo tree trace till current node, by using
current policy value network to estimate.

The definition of our environment is the most
breakthrough for implementing AlphaZero method.
Instead of the raw board representations, we combined the
state for both two colored pieces, king pieces and also the
last move information. Also the action space definition is
a tricky strategy. In order to represents the king’s action,
we used a 4 dimensional vector for 4 directions’ move.
And the total action space is a combination of states and
actions, which will have a maximum dimension of 32 by
4, which significantly reduces the computational costs.

6. Conclusion
In this project, we generalize this approach and apply

the Alpha Zero algorithm to two popular game problems,
Gomoku, Connect Four and Checker.

For Gomoku, we implement three versions of deep
neural networks with different input channel. By
comparison the speed of convergence and the
performance (winning rate) of these three models with the
same training epochs, we show that defining a good input
of deep neural network in AlphaZero algorithm plays an
important role in the final model.

For Connect Four, ​we implement the Alphago Zero
algorithm with residual network to solve the game. As
connect four’s action space and state space is much
smaller than the Gomoku or Checker, it converges really
fast.(It converages in 500 epochs with 50 MCTS
simulations per run). As an old game, there are dozens of
solvers from different algorithms, by competition with the
two typical solver, we can know that for such a game
which has limited state space, the defensive or offensive
status plays an vital role in the final outcome.

For Checker, we implemented AlphaZero algorithm to
compete with TD learning and Monte-Carlo Method. The
most notable work is how we define the environment, this

contributed tremendously to our programming implement
and also decreases the computational cost.

In a conclusion, we proved the ability of AlphaZero
Algorithm to be generalized to other games. And we also
showed the importance of the definition of both state
space and deep neural network input channel.

7. References
[1] Silver, David, et al. Mastering the game of Go with
deep neural networks and tree search, Nature 529.7587:
484-489, 2016
[2] M. Campbell, A. J. Hoane, and F. Hsu. Deep Blue.
Artificial Intelligence, 134:57–83, 2002.
[3] Littman, M. L. Markov games as a framework for
multi-agent reinforcement learning. In 11th International
Conference on Machine Learning, 157–163 (1994).
[4] Gelly, S. & Silver, D. Monte-Carlo tree search and
rapid action value estimation in computer Go. Artif.
Intell. 175, 1856–1875 (2011).
[3] T.K. William, S. Pham, Experience-based learning
experiments using Gomoku, in: Proceedings of IEEE
International Conference on Systems, Man, and
Cybernetics, Charlottesville, Virginia, USA, vol. 2,
October 13–16, 1991, pp. 1405–1410.
[4] B. Freisleben, A neural network that learns to play
five-in-a-row, in: Second New Zealand International
Two-Stream Conference on Artificial Neural Networks
and Expert Systems, 1995, pp. 87–90.
[5] G. Tesauro, Neurogammon: a neural-network
backgammon program, in: Proceedings of International
Joint Conference Neural Networks, San Diego,
California, USA, June 17–21,1990, pp. 33–40.
[6] Schaeffer, J., Hlynka, M. & Jussila, V. Temporal
difference learning applied to a high-performance
game-playing program. In 17th International Joint
Conference on Artificial Intelligence, 529–534 (2001).
[7] Baxter, J., Tridgell, A. & Weaver, L. Learning to play
chess using temporal differences. Mach. Learn. 40,
243–263 (2000).
[8] Amco Dubel, Jaap Brandsema, and L. Lefakis,
Reinforcement learning project: AI Checkers Player.
[9] ​https://github.com/junxiaosong/AlphaZero_Gomoku
[10] Müller, M., Enzenberger, M., Arneson, B. & Segal,
R. Fuego – an open-source framework for board games
and Go engine based on Monte-Carlo tree search. IEEE
Trans. Comput. Intell. AI in Games 2, 259–270 (2010)
[11] Williams, R. J. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Mach. Learn. 8, 229–256 (1992)
[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Deep
Residual Learning for Image Recognition

https://github.com/junxiaosong/AlphaZero_Gomoku

 7

[13] Victor Allis, A Knowledge-based Approach of
Connect-Four, 1988
[14] Knuth, D. E. & Moore, R. W. An analysis of
alpha-beta pruning. Artif. Intell. 6, 293–326 (1975)
[15] http://connect4.gamesolver.org/

8. Contributions

All team members contributed equally in all stages of
this project. All team members approve our work
presented in this report including this contributions
statement.

Fan Yang​: Responsible for Gomoku game environment
implementation, MCTS implementation and related
paperwork.

Ming Li​: Responsible for Connect Four game
environment implement and MCTS implementation and
related paperwork.

Wenyi Tao​: Responsible for Checker game environment
implementation, comparison of TD algorithm, MC
algorithm, policy network algorithm and related
paperwork.

Xinlei Cao​: Responsible for Connect Four policy network
implementation, experiment result and related
paperwork.

Ziyi Ye​: Responsible for Gomoku policy network
implementation, experiment result and related
paperwork.

